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ABSTRRC-L 

A model is presented for studying ocean circulation problems taking into account 
the complicated outline and bottom topography of the World Ocean. To obtain an 
efhcient scheme for the study of low-frequency, large-scale current systems, surface 
gravity-inertial waves are filtered out by the “rigid-lid” approximation. To resoive speciai 
features of the ocean circulation, such as the Equatorial b’ndercttrrent, the numerical 
model allows for a variable spacing in either the zonal or meridional direction. The model 
is designed to be as consistent as possible with the continuous equations with respect ic 
energy. It is demonstrated that no fictitious energy generation or decay is associated 
with the nonlinear terms in the finite difference form cf the momentum equations. 
The energy generation by buoyancy forces for the numerical model is also designed in 
such a way that no energy “‘leak” occurs in the transformation from potential to kinetic 
energy. 

I. INTRODUCTION 

Starting with the pioneering work of Ekman and gaining increasing momentum 
in the last two decades, considerable progress has been made in explaining some 
of the major features of the ocean circulation. An important gap has exisled. 
however, between operational and theoretical studies. The fundamental problems, 
in the dynamics of ocean currents which engaged the attention of :heoreticai 
oceanographers has often seemed quite remote from the task of interpreting the 
data on temperature, salinity and other water mass properties brought back from 
oceanographic expeditions. Recent progress holds out some hope that this sirua;iort 
is changing. On the one hand, new techniques for making direct current measure- 
ments are producing a much more complete description of ocean currents: and of 
ocean turbulence on a smaller scale. On the other band, more attention is being 
focused on those branches of hydrodynamics most closely related to ocean circuia- 
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tion studies. Renewed interest in carrying out laboratory experiments with rotating 
fluids has brought an appreciation of the importance of the basic work carried out 
by earlier investigators. 

An impediment to progress in the theory of ocean circulation has been the mathe- 
matical difficulties of solving the equations of even very simplified ocean circulation 
models. This is caused by the complicated geometry of ocean basins, and more 
importantly by the nonlinear nature of the equations. The availability of large-scale 
computers in recent years has now made it possible to carry out “numerica] 
experiments” using a direct computational approach in obtaining solutions to 
problems too complex to handle by any analytical method. The first ocean circula- 
tion research carried out along these lines was done in a series of studies by 
Sarkisyan (1955, 1962) in the Soviet Union. 

The present paper describes in detail a computational procedure to be used in 
ocean circulation studies. While it has certain features in common to that used in 
two earlier studies of a baroclinic ocean (Bryan and Cox, 1967, 1968), the present 
method introduces many simplifications, and is also generalized to handle an 
ocean basin with irregular coastlines and bottom topography. The principal differ- 
ence in the present computational procedure and the method recently -proposed by 
Crowley (1968) involve the treatment of nonlinear terms, and the boundary condi- 
tion of the vertical velocity at the ocean surface. The nonlinear terms in the present 
model are formulated on the basis of centered differencing using the same general 
method given by Fromm (1963) and Arakawa (1966). Crowiey uses a Forward 
difference with respect to time and a “time splitting” procedure for evaluating the 
nonlinear advection similar to that proposed by Marchuk (1964). The present 
procedure has the advantage compared to the Marchuk method of exactly 
conserving certain energetic properties of the flow in the inviscid case. It has the 
drawback, however, of requiring the retention of two time-levels of the variables 
in the machine memory. A demonstration of the energetic properties of the method 
is given in the Appendix. 

Crowley (1968) allows vertical displacements of the ocean surface, while these 
displacements are not allowed in the present scheme. This constraint is called the 
“rigid-lid” approximation. The effect is to include pressure variations at the upper 
surface, but to exclude the kinematic effects of surface variations. External inertial- 
gravitational waves are filtered out with no distortion of the steady-state ocean 
circulation and very little distortion of low-frequency motions. Since external 
gravity waves move rapidly compared to other types of disturbances in the ocean, 
removing these high speed waves allows an order of magnitude increase in the 
time step. This enormous economy in calculation justifies the increased complexity 
in the numerical scheme required by the “rigid-lid” approximation. 
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II. EQUATIONS OF THE MODEL 

General Foms o,f rite Equations 

In formulating the equations of the model the Navier-Stokes equations h;ive 
been modified in three important respects. First, density differences are neglected 
except in the buoyancy term, i.e. the Boussinesq approximation. Second, the iota: 
acceleration and other terms of the same order have been neglected in the equation 
of motion for the bv-component, reducing it to the hydrostatic approximation. 
The hydrostatic approximation may be shown to be highly accurate as long as the 
aspect ratio of bottom topography is much less than unity. Third, only the large- 
scale motion is treated explicitly, and the stresses exerted by smaller-scale motions 
are taken into account by a “turbulent viscosity” hypothesis, Ordinary viscosity 
and conductivity are very much smaller effects and are consequently negkctsci. 

Let 

where a is the radius of the earth, F is latitude. and h is longitude. Tr wili be co~ve- 
nient to define an advection operator, such that 

where ,U is some scalar quantity. The equations of motion may then be written as, 

and 

The hydrostatic relation is 

pg = -pz 

and the continuity equation is 
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There are two conservation equations, 

T,+LPT==Q 

s~+“5m=o 

(2.7) 

(2.8) 

The effect of compression on the temperature is not included. This effect is relatively 
small, and does not significantly alter the computation of density gradients in the 
horizontal plane, which determine the velocity field. The equation of state is based 
on an equation of the form 

p = FG7 S, P) (2.9) 

A convenient algebraic expression for (2.9) is given by E&art (1958). The effect of 
pressure in (2.9) may be taken into account with a high degree of accuracy by 
substituting -pogz for p. The terms FA, Fw, Q and o present the effects of turbulent 
viscosity and diffusion. Let 

4 = ni2m + mW4, (2.10) 

Then 

F” = A,vzl + $ {Au + (1 - &z2)u + 2~2~~~) (2.12) 

(2.14) 

The formulation of the F” and F” in the nonisotropic case, where mixing in the 
vertical differs from that in the horizontal, has been worked out by Saint-Guilly 
(1956). The formulation of mixing of momentum given by Bryan and Cox 
(1967) is incorrect, although the error is only significant in polar latitudes. 

In nature vertical mixing has a complex dependence on the density stratification, 
which is still very poorly understood. In the present model the effects of stratifica- 
tion are taken into account in a very simple manner which avoids specification of 
extra parameters. In the model vertical mixing is uniform for all stable cases, and 
infinite in the unstable case. Let p” be the density which a parcel of water would 
have if the in situ pressure is reduced to surface pressure. The delta in (2.13) and 
(2.14) is then given by 

a=; (P”>z < 0 
(p”X > 0 

(2.15) 
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Boundary conditions on velocity, temperature and salinity at the lateral VialiS are: 

14, 1:, r,, ) s,, = 0 (2.16,: 

where ( I)1 indicates a local derivative with respect to the coordinate normal CC the 
tvalil. At the upper boundary, 

1:’ = 0 ; _ 

pnA,(uz , 1’,) = Th. Pi - * 

where T* and ~0 are the zonal and meridional components of the surface stress, 

respectively. pO is the density of sea water at surface pressure a -ml standard Wcpera- 
ture and salinity. 

In the case of temperature and salinity two boundary conditions are possrble. 
Either the r%tx of heat and salinity may be specified, or the temperature and saiinit%.: 
fields themselves may be specified at the surface. 

Setting w = 0 at the surface is called the ‘“rigrd-iid” approximation. Ti;e 
kinematic effects of smali displacements of the upper surface are not taken inrc 
account. As outlined in the introduction this feature permits a mu.ch more ethcient 
calculation, since it filters out the very high-speed surface grai;itatiol?al-i~~Jriisl 
waves. 

At the lower boundary the very small effects of geothermal heat flow are negiected. 

and 
Pu--l,.~L~z ? PJ = TB,'\, TgG ;s,32, 

The particular law used to calculate the bottom stress is not specified here. Se;erai 
possibilities present themselves, of which Ekman theory is the simplest. Ge~ostroptiic 
drag laws, which have been developed by Gill (1968) and others might a:so have 
advantages. 

The formulation of the finite difference equations requires the elimination of 
pressure. Integrating the continuity equation with respect to L’. 
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At the surface the rigid lid requires that 

w(0) = 0 (2.223 

Combining (2.19) (2.21) and (2.22) it is possible to define a stream function such 
that, 

1 
0 

mG = a pov dz 
-H 

Making use of the hydrostatic relation 

(2.23) 

where ps is the surface pressure. 
To obtain a prediction equation for the transport stream function (2.3) and (2.4) 

are both integrated with respect to z, and multiplied by ap,/nzH and ap,lH 
respectively, 

-(vUHm>t = -(PA + 2Qqh1H + & (2.25) 

nz(h,/H)t = --IP,), + 2Q4,lH + f’v (2.26) 

where 

(2.27) 

and 

The surface pressure may be eliminated by cross-differentiating (2.25) and (2.26). 
The result is 

hh/H)~t -t (hJHn2),, = W’l, - WJhj, - 3lr,(2Qn/H), + #,(2fh1/H)~ (2.28) 

Let the vertical average over the whole water column be indicated by an overbar, 

0 = + Jr, ( ) dz (2.29) 
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and the deviation from a vertical average by (^). Thus the velocity components 
mxy be expressed as, 

(II, 9) = (:I, 1.) “- (l2, q (2.33, 

The U, 6 components may be predicted from (2.23) and (2.28.). To predict G. 5 ~YF‘ 
make use of (2.3) and (2.4) with the right hand side of (2.24) substituted for rhe 
pressure term. The surface pressure: p9. is temporarily set to zero. 

~1’ and L” differ from II and u due to the neglect of that part of the pressure gradient 
force which depends on the surface pressure. To determine ii and .S \be ser. 

(a. 6) =: (14’ - u’, ~7’ - l;'j {;,‘31 

Pn the determination of ti and 6 the error due to the neglect of surface pressure in 
LI’ and P’ is of no consequence, since that error is independent of z and is therefore 
eliminated by subtracting out ii’ and u’. 

III. BOUNDARY CONDITIONS ON THE TRANSPORT STREAM FLJXCPKX 

In the simp!e case of a closed basin with no islands the boundary condition: on 
(2.28) is simply that; 

$ = 0 (side boundaries) f’ ; J ) 

The World Ocean with its many islands is a multipli-connected region. At the shor.cs 
of each island the boundary condition is 

$ == p, r=l,2.3 R ).... il.” -i 

where r is the index of the islands. In general /.L is a function of time. The method 
f5r computing pT is based on that used by Kamenkovitch (1962) in a study of the 
Antarctic circumpolar current. 

Let v be the horizontal velocity vector, and 
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V is the horizontal grad operator and G is another horizontal vector representing 
the remaining terms in the equations of motion. The integrated form of (3.3) 
corresponding to (2.25) and (2.26) is 

k x V#, = -j”,(VPiP,, - G) dz (3.4) 

k is a unit vector normal to the horizontal plane. Dividing (3.4) by H, and taking 
the curl of (3.4) we obtain, 

V x (k/H x Vi&) = --P x $ I:, (Vj~/p~ - G) dz (3.5) 

Consider the closed basin with islands shown in Fig. 1. Let the transport stream 
function be represented by 

(3.6) 

FIG. 1. A closed ocean basin with two islands. 

In (3.6) only #,, and p,r are functions of time. The #,. fields satisfy the equation, 

C x (k/H x Cqb,.) = 0 (3.7) 

with the boundary condition that 

$7 = 1 (perimeter of island r) 

$7 = 0 (all other islands) 
(3.8) 
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$,&king use of the expression (3.6), the centered difference form cf the iota! time 
derivative of the transport stream function is 

2): = [@ + 2 pyl& - +7-1j/2 nr (3.9) 
r=1 

where the superscript I denotes the time level. 
To calculate & at each time level we make use of (3,5), (3.7) and (3.9), 

with the boundary condition that 

#=O (all boundariesj (3 1 i‘! 

To det,ermine ,uT(r = I, 2, 3,.... R) we make use of a line integral of (3.4) along a 
path around each island. Let s represent a unit vector in the direction of the path 
of the line integral. 

= -t 
'§ !k,ff x fT(#kl- #7-l) _ "' 

I ' 0 -1’ [T(p/p,) - G] dzi dS (3.12’4 
--ii 

R equations of the form of (3.12) for the paths around each island form a series of 
linear equations to determine &+I, r = 1, 2, 3 .-. X. Note that the SUifaCi? pressure 
can be eliminated from the right-hand side of (3.12). For a closed path 

where pB is the surface pressure. Therefore, making use of (2.24) 

IV. GENERAL METHOD OF FINITE 

In constructing the finite differencing scheme we wish to insure that certain inte- 
gral constraints will be maintained. In particular, it is desirable to construct the 
finite difference equations so that momentum, energy and the variance of temper- 
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ature and salinity will be conserved in the absence of dissipative effects. The advan- 
tage of this approach was first pointed out by Arakawa (1966). Arakawa showed 
that, if integral constraints on energy are maintained, the computation will be free 
of the troublesome “nonlinear” instability originally pointed out by Phillips (1959). 
A consistent formulation of the energetic properties is also extremely important in 
carrying out long-term numerical integrations for an oceanographic model. Such a 
formulation will avoid systematic errors which will accumulate with time. 

To give an example, let us consider the following equations for a scalar field cl, 

qt -+ v * vq = 0 (4.1) 

V.V~O (4.2) 

where v is a velocity vector. Let n be the normal vector to the outer boundary of 
the total volume. The condition that the normal component of velocity vanish 
along the entire exterior boundary is given as 

n . v = 0 (4.3) 

Let the total volume under consideration be divided into r subvolumes or cells. 
The volume of each cell will be denoted as OI,, . The average of 4 over each cell will 
be denoted as 12, . Integrating (4.1) over each cell 

d 
01,~“~ = -. qv.ndS f (4.4) 

In this case n is a unit vector normal to the cell boundary. Our finite difference 
formulation will be based on (4.4) rather than the original differential equation 
(4.1). 

Let each cell be bounded by B neighboring cells designated by the index b. In a 
regular rectangular array the total number of surrounding cells would be 6, but it 
could be more or less depending on the geometry. Let A, be the area of each inter- 
face and V, the normal velocity. Then (4.4) may be approximated by, 

where qb is the value of q on the interface 0. The corresponding continuity equation 
for the cell is 

VbAb = 0 
b=l 

This approach in formulating finite difference equations is similar to that discussed 
by Noh (1965). 
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The integral properties of a finite difference are particularly important in making 
a numerical integration with respect to time over a long period. Let 

where N is the total number of cells in the entire volume. il is the finite difference 
expression for the volume integral of 4. and r, the volume integral of 4”. Summing 
(4.5) over all cells, we obtain 

It can be seen that dtljdt == 0. since the various terms on the right hand side occu: 
as pairs along all interior interfaces. The contribution on adjacent interfaces zre 
equal and of opposite sign, cancelling each other when a sum is taken over the 
entire volume. Repeating the arguments given in (Bryan, 1966) we see that in general 
the left-hand side of (4.10) does not vanish. It can be made to vanish. however. if 
we use an appropriate interpolation formula for the interface value of qi _ 

4b = (Q, + G)b)!2 (4. I 1) 

Here Qb is the average value of 4 in the cell adjacent to the interface. Substi~ing 
(4.11) in (4.10) 

t/,& + : Q,8PA] (6.12) 
b=l 

Applying the continuity relation (4.6) we see that the first term on the right is zero, 
The second term on the right is made up of pairs of equal and opposite terms on 
interfaces. It vanishes due to the same cancelling effect that was discussed in 
connection with (4.9). 

This simple example will indicate the motivation for the approach in desigr:ing 
the finite difference equations in the next section. The present method is a generali- 
zation of the ideas of Arakawa (1966) which allows the arrangement of cells to be 
chosen in any manner that is convenient for the problem at hand. 
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V. ARRANGEMENTOF VARIABLES 

Cells with the index i’, j’ and Ic’ are placed so that they are centered on points 
given by the coordinates hi1 , qj’ , zh, where, 

(5.1) 

yo - vj’ = t Aj (5.2) 
j=l 

(5.3) 

The two horizontal components of velocity are averaged over cells centered on 
grid points given by integer indices, while temperature, salinity and the stream 
function are centered on grid points, specified by i’ + +, j’ +- $ and k’. In this case 

&,+I;2 = hi1 + +A,,+, (5.4) 

qj’+l;2 = vj’ - $A,,+, (5.5) 

The arrangement of the variables in the horizontal plane is shown in Fig. 2. The 

G‘S* ; T&B ] TrS,* 
I I 
I f 

“8” Iu v ;lI, U,” c----------*‘---------,I---------. 

f I 

I TS,* , T,S,* i T-S.* 

I I 

FIG, 2. The arrangement of variables in the horizontal plane for a grid with equal spacing 
in both directions. 
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pattern is similar to that used by Leith (1965). The motivation for choosing tlzis 
arrangement is to obtain as cIose meshing of the variables as possible, ye! sii’ii 
define both velocity components at the same time level and at the same poir?t. The 
advantage of defining II and o at the same point will be discussed in the next seclioa. 

The vertical velocity must be calculated separately for the velocity points and !‘or 
the salinity and temperature points. The vertical velocity points are located at the 
top and bottom interface of the cells and have the index k’ f fl where 

The arrangement of the variables is summarized in Table I. 

TABLE I[ 

THE PATTERN OF VARIABLES” 

s An entry of 1 or i/2 indicates whether a variable is Ic?ca,ted at an integer of half vaiu:: UC 
1 he index. 

VI, FINITE DIFFERENCE EQUATIONS 

Using the “box method” we first write down the finite difference formulation of 
the momentum equation for the ~1’ component given by (2.31). The dimensicr,s of 
the cell are shown in Fig. 3a. The volume of the cell is given as, 

‘XI = Q”d. 4 F z+1/2 j+lth2--f/i+l,‘.‘, imj (0.1) 

where 

4i+x:2 = (Oi + a,_,)/2 

dj+lIz = (4j + Aj.kI)/2 

d,,,:, = (A, + 4:&? 

jEI/4./3-6 
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/” / 
Aj // [u*; / 

l- 
Ak++ 

1 

U,Y 

-4 m-‘Ai - 

FIG. 3. a) The finite difference cell centered on the poinrs at which the horizontal velocity 
is calculated. b) The finite difference cell centered on the temperature and salinity points. 
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The finite difference equation is, 

cQ[(li’l+i - u”-Z)/2 /Jt - Qf(pl -+ &‘)] 

where 4 is a dummy index for k. In (6.2) all indices are understood to be i, .I, k. : 
except as otherwise specified. Certain undefined variables occur in (6,2). Fo:: 
example the density points are not defined on integer ,;-points. These points are 
understood to be simple averages of adjacent points where they are defined. 

The advection of momentum, and viscous terms are contained in C, , 

+ a,(1 - n2tnp)~i/ff2 - 2rzn~d,+,!,d,~+,,,(z?~-~.:~ - ri-lj&;-!-l. (6.3) 

Note that the viscous terms are lagged one time step behind the remaining 
terms on the right-hand side of (6.2). This means that the difference scheme is 
centered with respect to time for the pressure term and nonlinear terms, but forward 
time steps with an interval of 2 At are taken with respect to the viscous term. This 
arrangement is based on a discussion of the numerical stability- of similar rime 
dependent problems given by Richtmyer (1957). 

The layout of variables in the horizontal plane of the numerical grid shows the 
coriohs terms in (6.2) to be approximated by an average between the r + I and 
I - I time step. This arrangement is widely used in numerical models of the atmos- 
phere in the Soviet Union (March& 1964). It amounts to an implicit treatmen: of 
the coriohs terms and allows a time step longer than the inertial period, if ail other 
stability criteria are satisfied. This is particular!y advantageous for a coarse grid 
with a mesh size of greater than 4” of latitude and longitude. A coarse grid of this 
type might be useful in ocean circulation calculations to save computation during 
the first period of adjustment. More detailed solutions are then obtained by inter- 
polating the initial solutions to a finer grid. 
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The details of the nonlinear terms in (6.3) are shown below. Again all indices are 
understood to be i, j, k, I unless otherwise specified. 

VA% = Ak+1;2Aj+l!2%+1,2 

x [a (+;)i+m + ($ie~/e,j+~le - ~i--1!2,i+l:Z)l(H~Ai+l,D)] (6.7) 

V,A,u5 = 011~~--1;2)211--1,$/(i~1AX.+l,s) (6.8) 

v&u, = - “*~k+l,ell’~+l,zl(“A,~+l/e) (6.9) 

In (6.4)-(6.7) the terms ti and 8 are defined as? 

@P% = (u, 4k - +-y& 3 4 Lli2 
4=1 

and the depth values HI . Hz, H3 ) and Hd, are defined as, 

HI = maximum of (Hi,j or H,,I~,~) (6.10) 

H, = maximum OF (Hf,j or Hi-l,j) (6.11) 

Hz = maximum of (Hi,j or Hi,j,) (6.12) 

HJ = maximum of (Hi,, or Hi,,,,) (6.13) 

Separate diagnostic relations formed from the continuity equations are required to 
calculate the vertical velocity at 21, u points, and T, S points. For the calculation of 

(6.14) 

The terms VI , V, , Vz and V* are given in brackets in (6.4)-(6.7). 
The predictive equations for T. S are considerably simpler than the momentum 

equations. The cell that Forms the basis of the “box” method is shown in Fig. 3.b. 
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examined, T”+l and ,!P+l are reset so that the temperature and salinity are uniform 
over any group of adjacent layers for which (6.23) is satisfied, 

(6.24) 

where k a.. k + N are the indices of the adjacent unstable layers. The adjustment 
given by (6.24) corresponds to infinite mixing in the unstable part of the water 
column. A similar adjustment is done for salinity. When this has been carried out 
the entire column is scanned again to see if (6.23) is still satisfied at any point. If any 
instability is indicated, the entire process is repeated as many times as is necessary. 

The relationship between the velocity components and the transport stream 
function is given by 

(6.26) 

The vertically averaged velocity components will be written as ti and Ls. The 
components 5 and 0 may be obtained from the transport stream function by 
multiplying the right hand side of (6.25) and (6.26) by (poaH)-l and (poaH)-l FH, 
respectively. 

A predictive equation for the transport stream function completes the system. 
All variables have the subscript i -t 3, j + 1 unless otherwise specified. 

Ai,.lAj+,L(i,bz+l - 9”-‘)/2 At 
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The operator L on the left-hand side of (4.27) is defined by (6.26). 

At each time step a second order equation of the form i#‘+’ = :M~+l,l,ji~riz may 
be solved by relaxation, one of the few methods general enough to handle the 
complicated geometry of existing ocean basins. In the relaxation process the va!ue 
of the transport stream function for the previous time step may be used as a first 
guess. This procedure greatly speeds up the convergence process. 

The quantity FL! in (6.27) is yet to be defined 

The expression for FV has an exactly parallel form. As before q corresponds io a 
dummy vertical index within the summation with respect to k. 

It is now possible to summarize the numerical integration procedure. New values 
of temperature and salinity are predicted from equations of the form given in ~~6. i 6’1. 
Relation (6.2) and a corresponding equation for the c-component serve 10 predict 
(:C, c’:)~,~= These components are then used to find the new values of (fi, 5)r+r, 

The predicted values of (ii, ii) may be obtained from (6.25) and (6.26) uskg the 
new value of the transport stream function. 

Once new time levels for the predicted variables have been found, the diagr;osk 
relations based on the continuity equation and the equation of state are used to 
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find w and p for the new time level. Experience has shown (Lilly, 1965) that repeated 
use of the leap-frog time differencing scheme may lead to a serious “split” between 
adjacent time levels. This is caused by the fact that centered differences artificially 
change the prediction equations from first to second order with respect to time. 
Following a suggestion made by Arakawa, * this difficulty is circumvented by 
periodically substituting a forward time step for the centered time step. This 
procedure is equivalent to throwin g away one of the two solutions at regular 
intervals before the “split” becomes significant. A ratio of 23 leap-frog time steps 
to one forward time step is a typical value used in one rather extensive calculation. 

VII. BOUNDARY CONDITIONS OF THE FINITE DIFFERENCE EQUATIONS 

The basic information on boundary conditions is the number of cells stacked 
downward from the surface at each T, S point given by the indices, i + 4, j + 4. 
Let the number of cells be given as Ki+l:t,j+l,z , then 

The number of cells at velocity points is then given by, 

&,; = Minimum Of(Ki+llp,j+ll~ , Kw~,~+~I~ , Ki-l/2,j--l/g , &+l/p,j-1/J (7.2) 

The depth at i, j may then be calculated according to a formula corresponding to 
(7.1). The boundary condition on velocity is very simple, 

(Uj Z2)i.j = 0 k > Ki,j (7.3) 
and in the case of the transport stream function, 

*i+l/2.j+.1/2 = constant, Ki+l,z,j+1,2 = 0 (7.4) 

$i+ll?;,j - #i-l/e,i = 0, Kcj = 0 (7.5) 

*&-l/2 - #i,j+liZ = OY l&j = 0 (7.6) 

The constant in (7.4) has a different value for the shores of the mainland and each 
island. The procedure for computing these values is given in Section 3. 

In the case of temperature and salinity the boundary condition must be set for 
each point adjacent to a wall. Due to the irregular bottom topography the boundary 
condition may change from one level to the next for any single point in 
the horizontal plane. First a test is made. If 

*Personal communication. 
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then 

where 

(A, B) = (1, O), (-1; 0). (0, I), (0: ---I) .; 7.9; 

The test given by (7.7) indicates whether k exceeds the maximum number of !eveis at 
any adjacent temperature and salinity point. This indicates the existence of in 
adjacent wall. The exact computational procedure used to set the boundary co&h- 
tiara according to (7.7)-(7.9) will naturally depend on the computing equipincnt 
-used. In some cases it may be optimum to test during the course of the computa- 
tions. In other cases it may be more efficient to store the results of tests carried ou:, 
in an initial inspection in the form of a table. The table would then be used to set 
the boundary conditions. 

VIII. FINITE DIFFERENCE FoRML!L.~TION OF h.A?!DS 

The formulation in the case of islands is straightforward, if somewhat curnber- 
some. The method follows the outline given for the continuous equations in Section 
3. If R is the number of islands it is necessary to include R + 1 separate fields for 
the stream function 

Only & is a function of time, the remaining fields, $T 5 are kept fixed and store 
the permament memory of the machine. It is only necessary to recompute an 
ampiitude [A,. for each island, at each time step. 

Let G be some horizontal vector. such that 

G = ic”’ -+ jG” (Sj 

We define the numerical equivalent of a line integral in terms of an operator B. 

The line integral is taken counterclockwise in the i, ,j plane. The integral given rr 
(8.3) is a simple rectangular path. In some cases it may not be possible to constrl:ct 
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simple rectangular paths around islands, because of other nearby islands or conti-. 
nental boundaries. In such cases it would be necessary to construct a more compli- 
cated path around the perimeter of several adjoining rectangles of various shapes. 

Corresponding to (3.6) it is possible to define the vertically averaged flow 
vector as 

where 

R 

81 = 5, + 1 /.&%Yr (8.4) 
I=1 

t = (UH)-l [-i(#j,j-lpz - dJi,j+l/dlAj+l,~ + h~z(#i+l,2,j - &-I :g,j)/Ac+l/2] (8.5) 

Using the operator given in (8.3) to denote the line integral around a closed path, 
it is possible to write the finite difference equivalent of (3.10) as 

B[l -t 2L+z Atk x ( )I (v;+1 + g p;+lq) 

= B[l - 2fh dtk x ( )I+-’ + 2 AtB(iFU + iFV)r (8.6) 

The terms FU and FP’in (8.6) have previously been defined in (6.29) of the previous 
section. It is possible to write R equations like (8.6) for closed paths around each 
island. Since the right-hand side of (8.6) is known, these R relations constitute a 
set of linear equations sufficient to find pr. The matrix of coefficients on the 
left of (8.6) can be determined, then inverted and stored in memory at the beginning 
of the computation, since they do not vary with time. Once the left-hand side of 
(8.6) is calculated at each time step, ,L+ +l can then be computed by a simple matrix 
multiplication. 

IX. COMPUTATIONS CARRIEDOUTWITHTHE METHOD 

To illustrate how the method could be applied, two examples will be sketched 
briefly. Detailed results will be given elsewhere. The layout of the grid for the first 
computation carried out by M.D. Cox is shown in Fig. 4. The area covers the 
Indian Ocean, extending from the Asian continent down to 18’ S. On the west it is 
bounded by Africa, and on the east by the meridian at 102” E and the Malayan 
Peninsula. The first stage of the calculation was carried out with a 4” mesh and 
6 levels in the vertical direction. Temperature, salinity and wind stress fields taken 
from climatic atlases are specified at the surface as a function of season of the year. 
In the first stage of the calculation it is possible to take a time step of 12 hours, each 
time step requiring 10 seconds to compute on a UNIVAC 1108 computer. Only a 
few fields are stored permanently in the 65K rapid access memory of the machine. 
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FJG. 4. Numerical grid used for calculation of the seasonal changes ir! circulation of rix 
Indian Ocean. (Left) 20 resolution and (right) lo resolution. 

Most of the fields are kept on the magnetic drums and cycled through the memory 
when needed. Shifts from magnetic drums to memory take place while the com- 
putation is in progress. so that no extra time is required for the transfer process. 

Experience indicates that it is advantageous to start with a large value of & 
and decrease this value as the grid is successively refined. The !aterai difiusion 
coefficient. Ahi, is kept at a low value throughout the computation. The motivation 
for this procedure is that the density field adjusts itseifvery slowly, while the velocity 
field can adjust relatively rapidly to any change in the lateral friction coeficient. 
Each new stage of the computation must be started with a forward time step 
followed by centered time steps. 

The layout of the grid in the second and third stages of the computation is &own 
in Fig. 4. The final mesh size is 1” of latitude and longitude. Along the open bound- 
ary the transport stream function is taken from charts of Sverdrup transport com- 
puted by Welander (1959). The temperature and salinity distributions in the 
vertical section, which encloses the area, .sere taken from hydrographic dzrr 
supplied by the World Oceanographic Data Center A. Let ~2 and S denok the 
deviation of the velocity components from the vertical mean. The total transporr 
through the boundary is determined by the transport stream function, and t11e 
gradients normal to the boundary of Iz and 4 are set equal to zero. This condition 
2ilows the vertical profile of the inflow and outflow v to adjust geostrophicaily to 
the density field specified at the boundary. 

A second computation performed with the present model 1s part of a study cf 
the thermohaline circulation of the southern hemisphere oceans. The final pattern 
of the mass transport stream function is shown in Fig. S, based on an average taken 
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LONGITUDE 
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. -,,, ” 

FIG. 5. The pattern of transport stream function obtained in a theoretical study of the 
Antarctic Circumpolar Current. 

over the final part of the run to remove the effect of persistent fluctuations. The 
basin includes spherical geometry and extends from the equator to 70% with a 
gap in the meridional wall at about 60”. Cyclic boundary conditions are assumed in 
the gap, so that the flow coming in is exactly like that going out. The total flow 
through the gap must be computed according to the Kamenkovitch method outlined 
in Section III. The computation is carried out for a rotation rate one order of 
magnitude less than that of the earth. The ocean circulation is being driven by 
both a wind stress distribution and a density gradient imposed at the surface. 
Initially all density surfaces are flat and the fluid is at complete rest. The low rotation 
explains the unrealistic width of the western boundary current. 

The computation is carried out for a flat bottom. A variable mesh width is used 
to provide extra resolution along all lateral boundaries. The smallest mesh interval 
near the wall is approximately l”, while in the interior the grid points are spaced 
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approximately 6” apart. There are 8 levels in the vertical. A typical time srep is 
l/l0 of a day. and the equilibrium solution in Fig. 5 is after 30 years of mode! r/me. 
This required a total of 200 hours of machine time on the Univac 1108. To examine 
the realistic case with the correct rotation rate for the earth requires even more 
computation, since the time to reach equilibrium is longer, and the boimdarq 
currents are narrower and require more grid points for accurate resolution.. 

APPENDIX 

in order to be sure that a universal scheme will be useful for studying the behavior 
of a hydrodynamic system over an extended period, careful checks shoutd be 
made of the energy balance. The choice of numerical scheme given in this paper is 
largely motivated by energy considerations. Only an energy consistent scheme wi:?l 
avoid the special type of instability described by Phillips (1959) without excessive 
damping of important features of the flow. 

Let 
lY=K+R p&i? I 

where 
R = p&p + L’“)Q (A.2j 

and 
zz = p&p + q/2 {A.?) 

K may be considered the kinetic energy of the external mode, and I? the kinetic 
energy of the internal mode. Let ( 1 designate the volume integral over a closed 
ocean basin. If we multiply the left-hand side of (2.28) by IH$/(~~H,cI~) and in’legrate 
over the entire volume. 

The first term on the right vanishes with the boundary conditio:l that # = 0 
along the lateral boundaries. Therefore, 

Multiplying the right-hand side of (2.28) by --~)nz,l(a~H~~) n-e obtain, 
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(A-9) 
The complete expression for p - pS is given in (2.24). 

In order to write down an expression fork, , (2.3 1) and (2.32) must be multiplied 
by poG and poC, respectively. Integrating the sum of the results over the entire 
volume, 

{&I = 15 + 16 + 1, -t- 1, (A. 10) 

I, = -{(poBpltpu + po+z%} (A.1 1) 

1, = 1 PO; (tiuv - &u) j (A.lla) 

1, = {potiF + pow”) (A. 12) 

(A.13) 

To demonstrate the energetic consistency of our model we wish to show that; 
(a) the nonlinear terms in the difference equations have no net effect on the total 
amount of kinetic energy, and (b) the exchange terms between potential and 
kinetic energy is correctly accounted for. The requirement (a) is satisfied if, 

r, -t 15 = 0 

r, -t I, = 0 

The requirement (b) is equivalent to 

(A. 14) 

(A. 14a) 

or 

(A.15) 
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To prove that (A. 14) and (A. 15) hold for the present numerical scheme invoives 
rather complicated algebraic manipulation. To simplify the derivations we will use 
a notation and approach similar to that of Lilly (1964). 

Let 
211” = 7)i+1;2 + q-1.2 (A. ! 5) 

S,,T = i-jf+l 2 - qz-1 i) (Ai7:, 

We have the following rules, 

and 

g’ - 7jP” = @,,(ps,),) (A. !9,) 

(A. 18) and (A. 19) may be easily verified by simply substituting (A.16j and (.%. 371, 
Et is obvious that (A.16)-(A.19) hold in the sam e v,‘ay, if p is substituted for in 
Substituting tm for /3 in (A. 18) and making use of (A.19) we obtain, 

As in the case of (A. 18) and (A.19) the rule given by jA.20j is also vaiid if g: and 2 
are exchanged at all points in the equation. 

An expression for II , may be obtained by multiplying (6.27) by $, and summing 
over all haIf integer points. Note that it is only necessary to multiply by UI,/J rather 
than o&z/H, since the factor /72/H cancels out in the \;oiume integra!. 

The overbar without a superscript indicates a vertical average, while the overbars 
with superscripts are the two point horizontal averages defined by (A. 16). 
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The boundary conditions on the transport stream function given in Section 7 are 
such that the last 4 terms of (A.22) vanish. We also note that (6.25) and (6.26) give, 

(A.23) 

Substituting (A.23)-(A.22) and rejecting the terms which vanish on integration, 

It is now possible to combine I, and Z, as, 

where we have made use of the relation, 

Hii% = 1 iz?uA,+,!, (A.26) 
I, 

From (6.3) it can be seen that (A.25) may be written as, 

6 
a2a;1p, (fi + a> c nzvf)J&Jl~ 

r+1/2 j+1:2 !s+1j2 b=l 

(A.27) 

where 

i vb.&, = 0 
b=l 

(A.28) 

is the local continuity equation for each cell. To demonstrate that Zl + Zj vanishes, 
it is only necessary to repeat the arguments given in Section 4. The nonlinear 
terms will not change the average kinetic energy of the entire volume if ub and ol, 
are defined as the arithmetic average between adjacent cells. This completes the 
derivation of (A.14). To derive (A.14a) we follow the same procedure shown in 
(A.21)-(A.25) where I2 replaces Z, and Z6 replaces I5 . Since the demonstration is 
closely parallel to that for (A.14) we avoid writing out the detailed equations. 
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Next. \ve investigate the pressure force terms. If we multiply (6.27) by z,+> the 
arguments of (A.21)-(A.24 may be repeated to show that 

Let (6.2) be multiplied by ti and an equivalent equation for the u’-component be 
multiplied by 5, combining the results and integrating, 

The sum I, + I8 is then a similar expression with ii and 4 replaced by the tctai 
components 12 and v, respectively. 

Next we make use of (A.20). The resuit is that: 

The continuity equation at i + 4, j + 4 points is 

Substituting (A.32) in (A.31), 

The expression (A.33) is equivalent of (A. 15) for the continuous case, and completes 
the derivation. 
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